Calibrated Elastic Regularization in Matrix Completion
نویسندگان
چکیده
This paper concerns the problem of matrix completion, which is to estimate a matrix from observations in a small subset of indices. We propose a calibrated spectrum elastic net method with a sum of the nuclear and Frobenius penalties and develop an iterative algorithm to solve the convex minimization problem. The iterative algorithm alternates between imputing the missing entries in the incomplete matrix by the current guess and estimating the matrix by a scaled soft-thresholding singular value decomposition of the imputed matrix until the resulting matrix converges. A calibration step follows to correct the bias caused by the Frobenius penalty. Under proper coherence conditions and for suitable penalties levels, we prove that the proposed estimator achieves an error bound of nearly optimal order and in proportion to the noise level. This provides a unified analysis of the noisy and noiseless matrix completion problems. Simulation results are presented to compare our proposal with previous ones.
منابع مشابه
Spectral k-Support Norm Regularization
The k-support norm has successfully been applied to sparse vector prediction problems. We observe that it belongs to a wider class of norms, which we call the box-norms. Within this framework we derive an efficient algorithm to compute the proximity operator of the squared norm, improving upon the original method for the k-support norm. We extend the norms from the vector to the matrix setting ...
متن کاملRegularization and variable selection via the elastic net
We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together.The elastic net is particularly...
متن کاملExploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net
A new approach to regression regularization called the Pairwise Elastic Net is proposed. Like the Elastic Net, it simultaneously performs automatic variable selection and continuous shrinkage. In addition, the Pairwise Elastic Net encourages the grouping of strongly correlated predictors based on a pairwise similarity measure. We give examples of how the approach can be used to achieve the obje...
متن کامل